Residuals for “Simple” Linear Regression
Sleuth 3 Sections 7.3.1, 7.3.4, and 7.4.3

Previously

o Example: flight air times (response) as a function of distance (explanatory)
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e Observations follow a normal distribution with mean that is a linear function of the explanatory variable
o A few ways of writing this:
— Y follows a normal distribution with mean p = g + 51X
— Y, ~ Normal(5y + 51 X;,0)
—Y; = Bo + f1X; + i, where g; ~ Normal(, o)
e The last topic we covered was confidence intervals for the mean response at a given value of X:
— We are 95% confident that the mean air time for flights travelling 589 miles is between 98.1 min and 104.2 min.
— We are 95% confident that at every distance, the population mean air time at that distance is within the
Scheffe-adjusted confidence bands.

1754

Q 1504
£
T

‘TS 1251

100 4

600 700 800 900 1000
distance
Today

e Individual responses don’t fall exactly at the mean. We can quantify how far from the line observations tend to fall
o After today, you should be able to:

— Calculate a residual from a simple linear regression model fit

— Know that the coefficient estimates BO and Bl are found by minimizing the sum of squared residuals

— Use the residual standard error to get a rough sense of how close points tend to fall to the line



— Find and interpret a prediction interval using R commands
— Understand why prediction intervals are wider than confidence intervals



Example Data Set: US News and World Reports 2013 College Statistics

Across colleges in the US, we have measurements of (among other variables):

o Acceptance rate (what proportion of applicants are admitted)
o Graduation rate (what proportion of students graduate within 6 years)
Let’s study the association between the acceptance rate (explanatory) and graduation rate (response).

library(readr)
colleges <- read_csv("http://www.evanlray.com/data/sdm4/Graduation_rates_2013.csv")
head(colleges)

## # A tibble: 6 x b
##  Tuition Enrollment Acceptance Retention Grad

## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 40170 8010 0.079 0.98 0.96
## 2 42292 19726 0.061 0.98 0.97
## 3 44000 11906 0.071 0.99 0.96
## 4 49138 23168 0.074 0.99 0.97
## 5 43245 18217 0.066 0.98 0.95
## 6 46386 12508 0.132 0.99 0.92

ggplot(data = colleges, mapping = aes(x = Acceptance, y = Grad)) +
geom_point () +
geom_smooth(method = "Im", se
theme_bw ()
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linear_fit <- 1lm(Grad ~ Acceptance, data = colleges)
summary(linear_fit)

##

## Call:

## 1m(formula = Grad ~ Acceptance, data = colleges)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.026914 -0.010876 0.000968 0.010656 0.039947

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 0.978086 0.008582 113.966 < 2e-16 #**x*

## Acceptance -0.291986  0.054748 -5.333 2.36e-05 *x*x

##H ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.01617 on 22 degrees of freedom
## Multiple R-squared: 0.5639, Adjusted R-squared: 0.544
## F-statistic: 28.44 on 1 and 22 DF, p-value: 2.36e-05
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1. The college highlighted in the figure above had an acceptance rate of 0.126, and a graduation rate of
0.96. Find the predicted graduation rate for colleges with acceptance rates of 0.126 and the residual for
this college.

Find the predicted value:

0.978 - 0.292 * 0.126

## [1] 0.941208

predict(linear_fit, newdata = data.frame(Acceptance = 0.126))

## 1
## 0.9412959

Find the residual:

Model fit by least squares

o In general, smaller residuals are better (but not always — to be discussed in more depth later?)
e Most common strategy for estimating Sy and S; is by minimizing the Residual Sum of Squares:

BO and Bl minimize Z{Yz — (,BQ + BlXi)}2
i=1
o There are also other approaches (to be discussed later?)



Accessing the Residuals in R

colleges <- colleges 7>%

residuals(linear_fit)

Tuition Enrollment Acceptance Retention

<dbl>
.079
.061
.071
.074
.066
.132

O O O O O O

mutate (
fitted = predict(linear_fit),
residual
)
head(colleges)
## # A tibble: 6 x 7
#i#
## <dbl> <dbl>
## 1 40170 8010
## 2 42292 19726
## 3 44000 11906
## 4 49138 23168
## 5 43245 18217
## 6 46386 12508
# Verifying the first residual
0.96 - 0.955
## [1] 0.005

We can then make plots (more next class):
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calculation: observed response — fitted response
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¢ Question of the day: How far do the points tend to be from the line?
— Answer 1: £2 x (Standard deviation of residuals) (quick and approximate)
— Answer 2: Prediction intervals (formal)
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Answer 1: +2x Standard Deviation of Residuals (Approximate)

e Model: Y; ~ Normal(8y + 51 X;,0)
o Parameter o (unknown!!) describes standard deviation of the normal distribution in the population
e Estimate it by

5 \/ Sum of Squared Residuals B \/Z?zl{Yi — (Bo + B1X¢)}2
=\ n 7= -

number of parameters for the mean -2

o This is listed in the summary output as the “Residual standard error”: 0.01617
— (this is reasonable terminology but not quite in agreement with our definition of standard error)

Here is the histogram of the residuals from the last page with a Normal(0, 0.01617) distribution overlaid:
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e Fact 1: If a variable follows a normal distribution, about 95% of observations will fall within +2 standard deviations
of the mean
e Fact 2: The mean of the residuals is 0

2. Based on the residual standard deviation, about how close are the observed responses to the fitted
mean responses?

2 * 0.01617

## [1] 0.03234



Prediction Intervals

Our Goal

e An interval that will contain the response 1 for a new observation at a value xy of the explanatory variable
e Our best guess is the estimated mean [
e The amount by which our guess is wrong is the residual for the new observation:

Observed Response - Estimated Mean

Two Contributions to Prediction Error

Observed Response - Estimated Mean = (Observed Response - Actual Mean) - (Estimated Mean - Actual Mean)

1. Variability of observed response around true population mean: o, estimated by 6 = v/ 52

2. Variability of estimated mean around true population mean: estimated by SE(f) = \/ 52l 15

e We put those two pieces together to get:
A A A ~ —7)2
— SE(f—yo) = \/0'2 +62 % + 62

Prediction Intervals

o Prediction intervals for a new response are based on the error of the estimated mean from the response y for a new
individual observation
— [~ " SE( — o), fi + t"SE(ji — o))
— For 95% of samples and 95% of new observations with the specified value of x, a CI calculated using this formula
will contain the response for those new observations, yo = Bo + S1x0 + €o-

Compare to Confidence Intervals (from last class)

o Confidence intervals for the mean were based on the error of the estimated mean from the actual population mean
— [f—t*SE(p), i + t*SE(f)] where
— For 95% of samples, a CI calculated using this formula will contain the population mean response at x,
p = Po + Pizo



3. Find and interpret a 95% prediction interval for the graduation rate of a college that was not in our
data set before, and has an acceptance rate of 0.1.

predict_df <- data.frame(
Acceptance = 0.1
)

predict(linear_fit, newdata = predict_df, interval = "prediction", se.fit = TRUE)

## $fit

## fit lwr upr
## 1 0.9488876 0.9142951 0.98348
##

## $se.fit

## [1] 0.004108595

##

## $df

## [1] 22

##

## $residual.scale

## [1] 0.01616618

Compare to a confidence interval for the mean:

predict(linear_fit, newdata = predict_df, interval = "confidence", se.fit = TRUE)

## $fit

## fit lwr upr
## 1 0.9488876 0.9403669 0.9574083
##

## $se.fit

## [1] 0.004108595

##

## $df

## [1] 22

##

## $residual.scale

## [1] 0.01616618



No easy way to get Scheffe adjusted simultaneous intervals, but we can plot the individual prediction
intervals at each value of x in our data set as follows:

intervals <- predict(linear_fit, interval = "prediction") %>’
as.data.frame()

## Warning in predict.lm(linear_fit, interval = "prediction"): predictions on current data refer to _future_
head(intervals)

## fit lwr upr

## 1 0.9550193 0.9199975 0.9900411

## 2 0.9602750 0.9247617 0.9957884

## 3 0.9573552 0.9221287 0.9925817

## 4 0.9564792 0.9213321 0.9916263

## 5 0.9588151 0.9234494 0.9941808

## 6 0.9395440 0.9052956 0.9737924

colleges <- colleges %>%
bind_cols(
intervals

)
head(colleges)

## # A tibble: 6 x 10
##  Tuition Enrollment Acceptance Retention Grad fitted residual fit lwr upr

## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 40170 8010 0.079 0.98 0.96 0.955 0.00498 0.955 0.920 0.990
## 2 42292 19726 0.061 0.98 0.97 0.960 0.00972 0.960 0.925 0.996
## 3 44000 11906 0.071 0.99 0.96 0.957 0.00264 0.957 0.922 0.993
## 4 49138 23168 0.074 0.99 0.97 0.956 0.0135 0.956 0.921 0.992
## 5 43245 18217 0.066 0.98 0.95 0.959 -0.00882 0.959 0.923 0.994
## 6 46386 12508 0.132 0.99 0.92 0.940 -0.0195 0.940 0.905 0.974

ggplot(data = colleges, mapping = aes(x = Acceptance, y = Grad)) +
geom_point() +
geom_smooth(method = "Im") +

geom_line(mapping = aes(y = lwr), linetype = 2) +
geom_line(mapping = aes(y = upr), linetype = 2) +
theme_bw ()
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