Diagnostics - outliers and influential points
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Chapter 11: Outliers and Influential Observations

Case-influence statistics

Least squares regression can be heavily impacted by outliers and influential observations, so it is
important to identify such cases and deal with them appropriately, possibly through a transformation
Sleuth3 defines as “numerical measures associated with the individual influence of each observation
(each case)”

Can help (1) identify influential observations that may not be apparent from a graphical inspection
and (2) assign the overall influence of a case into what is unusual about its x value and what is unusual
about its y value relative to the fitted model

Statistics: —

12
— leverage for case i: h; = ﬁ [TﬁT] + %; a measure of the distance of case i from the average

Sx
x if h; > 2p/n, flag case as having high potential for excessive influence
— studentized residual for case i: studres; = >>—===; a residual divided by its estimated standard

T h,
deviation ——

5[, * Some residuals naturally have less variation because of their leverages (h;). In order to

/54‘/( O \

compare them and eliminate the leverage effect, we need to standardize them to put them

on a standard scale: numbers of standard deviations. Roughly 95% of normally distributed

observations fall within about 2 standard deviations of their mean (recall 68-99-99.7 Rule,

also know as the Empirical Rule), so it is common to investigate studentized residuals that
2 74 are larger than |2|.
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— Cook’s distance for case i: D; = > i 7 measures overall influence, meaning the effect

omitting a particular case i has on the estimated regression coefficients
C* ffj 4P fitted value in a fit using all cases
E* f’j(i): jt* fitted value in a fit that excludes case i
* p: number of regression parameters
* 62 estimated variance from the fit with all observations included
* May investigate cases where D; > 1



Anscombe’s Data

Anscombe’s quintet comprises five data sets that have nearly identical summary statistics (Z, sz, ¥, Sy,
correlation between x and y (r), linear regression line, and coefficient of determination (R?2)), but look very
different when they are plotted (see below). Statistician Francis Anscombe constructed these data sets in
1973 to illustrate the importance of graphing data before analyzing it and to demonstrate the effect of outliers

and other influential points (the subject of this lecture) on statistical properties.
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o For today, let’s focus on Data Sets 3 and 4. We will see how to identify the problematic observations
from the diagnostics.

o In data set 3, observation 3 is the one with a big Y!

anscombe$y3[3]

## (1] 12.74 <—

e In data set 4, observation 8 is the one with a big X!

anscombe$x4 [8]

## [1] 19




Data Set 3

« Every statistical software package will give you different plots by default. Here is my preferred option:

fit3 <- 1m(y3 ~ x3, data = anscombe)
anscombe <- anscombe %>/
mutate ( .
obszlndex = row_gumber(), X = | R MW AT
——>h3 = hatvalues(fit3),
studres3 = rstudent(fit3),

D3 = cooks.distance(fit3)

)

# 2p/n; p = 2 since we have beta_0 and beta_l in our simple linear rTegression model
2 * 2 / nrow(anscombe)

## [1] 0.3636364

ggplot(data = anscombe, mapping = aes(x = obs_index, y = h3)) +
geom_point () +

geom_hline(yintercept = 2 * 2 / nrow(anscombe)) +
ggtitle("Leverage - Data Set 3")

Leverage — Data Set 3
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ggplot(data = anscombe, mapping = aes(x = obs_index, y = studres3)) +
geom_point () +

ggtitle("Studentized Residuals - Data Set 3")

Studentized Residuals — Data Set 3
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ggplot(data = anscombe, mapping = aes(x = obs_index, y = D3)) +
geom_point () +

ggtitle("Cook's Distance - Data Set 3")
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Cook's Distance — Data Set 3
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Data Set 4

fit4 <- 1lm(y4 ~ x4, data = anscombe)
anscombe <- anscombe %>%
mutate (
obs_index = row_number(),
h4 = hatvalues(fit4),
studres4 = rstudent(fit4d),
D4 = cooks.distance(fit4)
)

# 2p/n; p = 2 since we have beta_0 and beta_1 in our simple linear regression model
2 * 2 / nrow(anscombe)

## [1] 0.3636364

ggplot(data = anscombe, mapping = aes(x = obs_index, y = h4)) +
geom_point () +
geom_hline(yintercept = 2 * 2 / nrow(anscombe)) +
ggtitle("Leverage - Data Set 4")

Leverage — Data Set 4
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ggplot(data = anscombe, mapping = aes(x = obs_index, y = studres4)) +
geom_point () +
ggtitle("Studentized Residuals - Data Set 4")
## Warning: Removed 1 rows containing missing values (geom_point).
Studentized Residuals — Data Set 4
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ggplot(data = anscombe, mapping = aes(x = obs_index, y = D4)) +
geom_point () +

ggtitle("Cook's Distance - Data Set 4")



## Warning: Removed 1 rows containing missing values (geom_point) <

Cook's Distance — Data Set 4
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The lower two plots look OK... what’s up with that warning?

anscombe$h4

##1234567@91011 Juveroge

## 0.1 0.1 0.1 0.1 0.10.10.1{1.0)0.10.10.1

anscombe$studressd

## 1 2 3 4 5 6
## -0.34104165 -1.06669299 0.58216636 1.73514504 1.30031318 0.03136768
it 7 3 9 10 11

## -1.62381807 / 1.27046922 0.75677904 -0.08931624
anscombe$D4

## 1 2 3 4 5

## 7.165166e-03 6.225950e-02 2.032144e-02 1.367179e-01 8.723799e-02

## 6 7 9 10

## 6.148813e-05 1.239465e-01 NaN||8.394407e-02 3.340334e-02

## 11

## 4.980902e-04 2 ’6\;
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R Code: Default Plots

You can get a set of different diagnostic plots more easily, but I find the plot involving Cook’s distance and
Leverage less intuitive:

plot (£it3)
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Note: to get the plots to all show up in the knitted pdf, I had to set figure height and width in the code
chunk declaration:

Emarkdown{r, fig.height = 4, fig.width = 4}



