
Concepts: Transformations for ANOVA models
Sleuth3 Sections 3.5 and 5.5

Context

• Transformations can sometimes help with the following issues:

– non-normal distributions within each group (but skewness is only a problem if it is very serious)
– lack of equal variance for all groups
– outliers (but usually only if this is a side effect of serious skewness)

• The most common transformations (that we’ll consider in this class) work for positive numbers only.

The Ladder of Powers

• Imagine a “ladder of powers” of y (or x): We start at y and go up or down the ladder.

Transformation R Code Comments
...

ey exp(y) Exactly where on the ladder the exponential trans-
formation belongs depends on the magnitude of the
data, but somewhere around here...

y2 y^2

y Start here (no transformation)
√

y sqrt(y)

y“0” log(y) We use log(y) here
−1/
√

y -1/sqrt(y) The − keeps the values of y in order
−1/y -1/y

−1/y2 -1/y^2
...

Some (minimal) facts about logarithms and exponentials

• Foundations:

– In this class the base of our logarithms is e
– Notation: exp(x) = ex

• log() and exp() are inverses

– log(exp(x)) = x
– exp(log(x)) = x

• They are useful because they convert multiplication to addition, and addition to multiplication

– log(a · b) = log(a) + log(b)
– exp(a + b) = exp(a) · exp(b)
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• Which direction?

– If a variable is skewed right, move it down the ladder (pull down large values)
– If a variable is skewed left, move it up the ladder (pull up small values)

0 20 40 60
y_cubed

2 Steps Up from Goal: y3 is very skewed right

4 8 12 16
y_squared

1 Step Up from Goal: y2 is slightly skewed right

1 2 3 4
y

Goal: y is symmetric

1.00 1.25 1.50 1.75 2.00
sqrt_y

1 Step Down from Goal: y is slightly skewed left

0.0 0.5 1.0
log_y

2 Steps Down from Goal: log(y) is very skewed left
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Example: Cloud Seeding (Sleuth3 Case Study 3.1.1)

Quote from book: “On each of 52 days that were deemed suitable for cloud seeding, a random mechanism was used to
decide whether to seed the target cloud on that day or to leave it unseeded as a control. An airplane flew through the
cloud in both cases. . . . [p]recipitation was measured as the total rain volume falling from the cloud base following the
airplane seeding run.”

clouds <- read_csv("http://www.evanlray.com/data/sleuth3/case0301_cloud_seeding.csv")
head(clouds)

## # A tibble: 6 x 2
## Rainfall Treatment
## <dbl> <chr>
## 1 1203. Unseeded
## 2 830. Unseeded
## 3 372. Unseeded
## 4 346. Unseeded
## 5 321. Unseeded
## 6 244. Unseeded

Starting Point
Here are density plots and box plots, separately for each Treatment.

ggplot(data = clouds, mapping = aes(x = Rainfall, color = Treatment)) +
geom_density()
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Standard deviations for each group:

clouds %>%
group_by(Treatment) %>%
summarize(

sd_rainfall = sd(Rainfall)
)

## # A tibble: 2 x 2
## Treatment sd_rainfall
## <chr> <dbl>
## 1 Seeded 651.
## 2 Unseeded 278.

Skewed right, so move down one step on the ladder.
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Down 1 Step:
√

Rainfall

clouds <- clouds %>%
mutate(

sqrt_rainfall = sqrt(Rainfall)
)

ggplot(data = clouds, mapping = aes(x = sqrt_rainfall, color = Treatment)) +
geom_density()
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clouds %>%
group_by(Treatment) %>%
summarize(

sd_rainfall = sd(sqrt_rainfall)
)

## # A tibble: 2 x 2
## Treatment sd_rainfall
## <chr> <dbl>
## 1 Seeded 12.5
## 2 Unseeded 8.24

These distributions are closer to symmetric – probably good enough.

The ratio of these standard deviations is less than 2 – often used as a guide for when we’re OK.

However, we can make it even better if we go down another step.
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Down 2 Steps: log(Rainfall)

clouds <- clouds %>%
mutate(

log_rainfall = log(Rainfall)
)

ggplot(data = clouds, mapping = aes(x = log_rainfall, color = Treatment)) +
geom_density()
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clouds %>%
group_by(Treatment) %>%
summarize(

sd_rainfall = sd(log_rainfall)
)

## # A tibble: 2 x 2
## Treatment sd_rainfall
## <chr> <dbl>
## 1 Seeded 1.60
## 2 Unseeded 1.64

Good enough! We can conduct our analysis on this scale.
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Analysis on transformed scale

clouds %>%
group_by(Treatment) %>%
summarize(

mean_log_rainfall = mean(log_rainfall)
)

## # A tibble: 2 x 2
## Treatment mean_log_rainfall
## <chr> <dbl>
## 1 Seeded 5.13
## 2 Unseeded 3.99

rainfall_fit <- lm(log_rainfall ~ Treatment, data = clouds)
library(gmodels)
fit.contrast(rainfall_fit, "Treatment", c(1, -1), conf.int = 0.95)

## Estimate Std. Error t value Pr(>|t|) lower CI
## Treatment c=( 1 -1 ) 1.143781 0.4495342 2.544369 0.01408266 0.240865
## upper CI
## Treatment c=( 1 -1 ) 2.046697
## attr(,"class")
## [1] "fit_contrast"

We can interpret these numbers either on the new, transformed, data scale or on the original data scale.

1. Interpret the group mean estimates above on the transformed scale (always works!):

2. Interpret the group mean estimates above on the original data scale (works if we got to a place where
distributions were approximately symmetric after transformation!):

exp(5.13)

## [1] 169.0171

exp(3.99)

## [1] 54.05489
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rainfall_fit <- lm(log_rainfall ~ Treatment, data = clouds)
summary(rainfall_fit)

##
## Call:
## lm(formula = log_rainfall ~ Treatment, data = clouds)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9904 -0.7453 0.1624 1.0187 3.1018
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1342 0.3179 16.152 <2e-16 ***
## TreatmentUnseeded -1.1438 0.4495 -2.544 0.0141 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.621 on 50 degrees of freedom
## Multiple R-squared: 0.1146, Adjusted R-squared: 0.09693
## F-statistic: 6.474 on 1 and 50 DF, p-value: 0.01408

confint(rainfall_fit)

## 2.5 % 97.5 %
## (Intercept) 4.495729 5.772645
## TreatmentUnseeded -2.046697 -0.240865

library(gmodels)
fit.contrast(rainfall_fit, "Treatment", c(1, -1), conf.int = 0.95)

## Estimate Std. Error t value Pr(>|t|) lower CI
## Treatment c=( 1 -1 ) 1.143781 0.4495342 2.544369 0.01408266 0.240865
## upper CI
## Treatment c=( 1 -1 ) 2.046697
## attr(,"class")
## [1] "fit_contrast"

3. Interpret the estimated difference in means above on the transformed scale (always works!):

4. Interpret the estimted difference in means above on the original data scale (works only if the transfor-
mation selected was the log transformation and the resulting distribution was approximately symmetric!):
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exp(1.143781)

## [1] 3.138613

exp(0.240865)

## [1] 1.272349

exp(2.046697)

## [1] 7.742286
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